(1) Let $F = F_pe$ for some prime p and natural number e > 0 Let $o \in Aut_p(F)$ be a non-trivial automorphism of finite order n. By taking powers of one may assume that n is prime. Let $x \in F$ such that $o(x) \neq x$.

let $m=r\cdot l$ and $E=IF_{em}\geq IF_{pe}(x)$. Then σ_{IE} is once again a non-trivial automorphism. Moreover $[E:E\cap K]=n$ as before. But $IF_{pe}(x)$ is the only subfield of E with $(E:IF_{pe}(x))=n$ this shows that $IF_{pe}(x)=E\cap K$ $\Rightarrow x \in K$ which is contradiction. This shows that every non-trivial element in $Aut_{F}(F)$ has infinite order.

Now lets show that $Aut_F(\widehat{F})$ is abelian. Let $\overline{\sigma}, S \in Aut_F(\widehat{F})$ and suppose that there exists $x \in \widehat{F}$ such that $(\sigma S - S \overline{\sigma})(x) \neq 0$.
Consider the field extension $F \subseteq F(x)$. As before $\sigma_{IF(x)}, S_{IF(x)} \in Gal(F^{(x)})$. But Gal(F(x)/F) is cyclic (so abolion) thus

(5 IFW) 8 IFW) - 8 IFW) O IFW) (X)=0 which is a contradiction

(2) li) We can write

 $G \cong \mathbb{Z}/n_i \mathbb{Z} \times - \times \mathbb{Z}/n_i \mathbb{Z}$ for $n_i \in \mathbb{N}$. by Dirichlet's theorem there exist a prime number p_i such that $p_i = k_i \cdot n_i + 1$ for some $k_i \in \mathbb{N}$ i.e. $n_i \mid p_i - 1$. As $(\mathbb{Z}/p_i \mathbb{Z})^{\times}$ is a cyclic grap of order $p_i - 1$ there exists a subgroup H_i of order k_i and we have $\mathbb{Z}/n_i \mathbb{Z} \cong \mathbb{Z}/p_i \mathbb{Z}/H_i$ and

Note that $(4/p_1 Z)^{2}/H_1 \times - \times (4/p_k)^{2}/H_k$

(ii) Note that by Dirichlets theorem there exists infinitely prime p_i such that $p_i = k_i \cdot n_i + 1$. This shows that there are infinitely many extensions $Q \subseteq L'$ such that $Gal(L'|Q) \cong G$. By the primitive element theorem, write K = Q(x) and define L = L'(x). Notice that $K \subseteq L$ is normal so L' is the splitting field of a polynomial therefore L'(x) is the splitting field of a polynomial. It is clearly separable as characteristic is Q. Therefore $Q(x) \subseteq L'(x)$ is Galois. Moreover it can be seen that $Gal(L'(x)/Q(x)) \cong Gal(L'|Q)$ hence we are done.

O - OIL

(3) Let K be an alg. closure of K. Then K is given by the union of all the intermediate finite extensions $K\subseteq L\subseteq K$. For such an extension L we have that $Gol(L/K) = \langle \sigma_L \rangle$ as Gol(L/K) is cyclic. Define $\overline{\sigma} \in Aut_k(\overline{K})$ by $\overline{\sigma}_{|L|} = \overline{\sigma}_L$. Let us show that $\overline{K}^{\overline{\sigma}} = K$. Let $X \in K$ such that $\overline{\sigma}(X) = X$. As $K\subseteq K(X)$ is a finite extension $X = \overline{\sigma}(X) = \overline{\sigma}_{K(X)}(X) \Rightarrow X \in K(X)^{\overline{\sigma}_{K(X)}} = K$.

Caution. One should show that $\bar{\sigma}$ is well defined, that is for $x \in LnL'$ where L_1L' are finite extensions of K we should show that $\sigma_L(x) = \sigma_L(x)$ As every Galois group is cyclic and thus abelian we have that $K \subseteq K(x)$ is also a cyclic extension.

Then $\sigma_L(x) = \sigma(x) = \sigma_U(x)$.

- (4)(i) The containment $imT \subseteq K$ is clear as T(P) is fixed by the action of GallUKI and $K \subseteq L$ is Galois. The additivity is a consequence of $g \in Gr$ being field homomorphisms.
 - (ii) In this case write $T(l) = \sum_{g \in G} g(l) = \sum_{i=0}^{n-1} \sigma^i(l) = l + \sigma(l) + \sigma^2(l) + l + \sigma^{n-1}(l)$ Now it is clear that $im(\sigma - id_L) \subseteq \ker(T)$. Suppose that $l \in \ker(T) = l + \sigma(l) + \sigma(l) + l + \sigma(l) + \sigma(l)$
- Suppose that $Q(32) \subseteq Q(w)$ where w is an nth root of unity for some n. Note that $Q \subseteq Q(w)$ is Galais. Moreover Gal(Q(w)/Q) is Abelian. As Q(35) is an intermediate extension $\exists H \in Gal(Q(w)/Q)$ such that Q(35) = Q(w)H. But as Gal(Q(w)/Q) is Abelian H is normal which implies that $Q \subseteq Q(35)$ is Galois. This is a contradiction.
- (b) Suppose that there is a non-real root $z\in C\setminus R$. Then \bar{z} is also a root. This shows that \bar{z} octs non-trivially on the roots of f thus has order 2 in Gal(LIQ). However $Gal(LIQ) \cong G_2$ which do not contain an element of order 2.
- (7) (i) Let F be the normal closure of L(α) of K. This is obtained by adjoining L(α) all the roots of the minimal polynomial of α over K. Let us show that $L(\alpha)^{norm} = L(\alpha, \sigma(\alpha))$.

First of all note that the polynomial $H(x) = (x^2 \beta)(x^2 - \sigma^2 \beta)(x^2 - \sigma^2 \beta)$ is in K[x]. Indeed all of its coefficients are invariant under the action of GallL/KI. Therefore $m_{X|K}$ | H(X) and the roots of $m_{X|K}$ are contained in $\{\pm \alpha_1 \pm \sigma(x), \pm \sigma^2(x)\}$ which are the roots of H(x). Moreover note that the only noots of $m_{X|K}$ can't be a and $-\alpha$ as $\beta \notin K$. Therefore either $\sigma(x) \in L(x)^{norm}$ or $\sigma^2(x) \in L(x)^{norm}$. In both cases by the identity,

 $\alpha^2 \sigma(\alpha)^2 \sigma^2(\alpha)^2 = \beta \sigma(\beta) \sigma^2(\beta) = 1$ we have that $\alpha \cdot \sigma(\alpha) \in L(\alpha) \cdot \sigma(\alpha)$, by the same identity we have that all the roots of H(x) are contained in $L(\alpha, \sigma(\alpha))$. This shows that $L(\alpha, \sigma(\alpha)) = L(\alpha) \cdot \sigma(\alpha)$.

Now let us compute $Gul(L(x_1\sigma(x))/K)$. Hist of all $[L(x_1\sigma(x)):K] = [L(x_1\sigma(x)):L(x)].[L(x):L].[L:K)$ $= [L(x_1\sigma(x)):L(x)]. 2 . 3$ Moreover $\sigma(x)$ is a root of $x^2 - \sigma(x)$ and $L(x) \neq L(x)^{norm} = L(x_1\sigma(x))$ therefore $[L(x_1\sigma(x)):L(x_1)] = 2$ and $|Gul(L(x_1\sigma(x))/K)| = 12$.

As Lial/k is not Galois (as it is not normal) Gal(Llatalal)/k) is not abelian.

Now the 2-Sylow group is normal as L/K is Galois. Looking at the Classification of finite groups of order 12 we see that Gal(L(αισία))/κ1≅ Α4.

(ii) We think of L as an intermediate extension, $Q \subseteq L \subseteq Q(\zeta_7)$ Recall that $Gal(Q(\zeta_7)/Q) = (U/7U)^{\times} = U/6U$ and it is generated by $\sigma: \zeta_7 \to \zeta_7^3$. Then L is given by the fixed field of $id_1\sigma^3i$. And $Gal(L/Q) = Gal(Q(\zeta_7)/Q)/(id_1\sigma^3) = id_1\sigma_1\sigma^2i$.

It remains to show that $(\zeta_1 + \zeta_1^6) \cdot (\zeta_1^3 + \zeta_1^4) \cdot (\zeta_1^2 + \zeta_1^5) = 1$

$$(*) = (\zeta_{7}^{4} + \zeta_{7}^{5} + \zeta_{7}^{2} + \zeta_{7}^{3})(\zeta_{7}^{2} + \zeta_{7}^{5}) = (\zeta_{7}^{6} + 1 + \zeta_{7}^{4} + \zeta_{7}^{5} + \zeta_{7}^{2} + \zeta_{7}^{3} + 1 + \zeta_{7})$$

Now we know that ξ_{+} is a root of $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1$ therefore the above expression is indeed equal to 1.